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A B S T R A C T

Examination of the brain’s condition with the Electroencephalogram (EEG) can be helpful to predict abnormality
and cerebral activities. The purpose of this study was to develop an Automated Diagnostic Tool (ADT) to in-
vestigate and classify the EEG signal patterns into normal and schizophrenia classes. The ADT implements a
sequence of events, such as EEG series splitting, non-linear features mining, t-test assisted feature selection,
classification and validation. The proposed ADT is employed to evaluate a 19-channel EEG signal collected from
normal and schizophrenia class volunteers. A dataset was created by splitting the raw 19-channel EEG into a
sequence of 6250 sample points, which was helpful to produce 1142 features of normal and schizophrenia class
patterns. Non-linear feature extraction was then implemented to mine 157 features from each EEG pattern, from
which 14 of the principal features were identified based on significance. Finally, a signal classification practice
with Decision-Tree (DT), Linear-Discriminant analysis (LD), k-Nearest-Neighbour (KNN), Probabilistic-Neural-
Network (PNN), and Support-Vector-Machine (SVM) with various kernels was implemented. The experimental
outcome showed that the SVM with Radial-Basis-Function (SVM-RBF) offered a superior average performance
value of 92.91% on the considered EEG dataset, as compared to other classifiers implemented in this work.

1. Introduction

Malfunction of the brain by disease or disorder affects normal ac-
tivity in humans [1–3]. Schizophrenia(sz) is a chronic disorder which
affects the thinking ability as well as general behavior. The report of the
World Health Organization (WHO) substantiates that sz is a severe
mental disorder, and more than 21 million people worldwide are af-
fected by it [4]. Yet, WHO has also stated that sz is treatable, and early
or post diagnosis may be helpful to identify its severity and stage. De-
tection and treatment of sz is essential in patients, since it creates
substantial inconvenience in regard to thinking, memory, perception,
and other living activities. If left untreated, it is an unalterable process
which damages the human behavioral abilities in its later stages [5].
Early as well as post discovery of sz may help during implementation of
possible treatment methods to cure or limit the effects. Most mental

disorders such as sz can be assessed by signaling [7] or imaging tech-
niques [6]. Recently, a number of non-invasive techniques have been
proposed and implemented by investigators to identify sz based on the
Electroencephalogram(EEG) acquired using multi-channel sensor ar-
rays [8,9]. The assessment and confirmation accuracy of sz from the
EEG pattern depends mainly on the tool considered to examine these
signals.

The imaging techniques, such as Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT), are costly and require addi-
tional recording and computational time as compared to signaling
procedures such as EEG [10–13]. An EEG signal acquired using an
appropriate electrode can be useful to reveal essential detail regarding
brain activity, and examination of these signals may help to detect the
condition of the brain [14,15,25]. During the clinical diagnostic pro-
cess, the EEG is obtained by placing the electrodes at predefined scalp
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sections. Recently, EEG patterns were extensively used to inspect for
maladies such as dementia, Alzheimer's disease, sleep disorder, epi-
lepsy, sz, Parkinson’s disease and other brain related disorders
[16,17,21,23,52,53].

Recent studies provide insights to the classification of sz based on
EEG patterns [18]. Table 1 highlights the summary of ADT systems
employed for the detection of sz using EEG signals. Kim et al. [26]
extracted EEG signals from 21 gold cup electrodes, positioned ac-
cording to the 10–20 international standards. Horizontal and vertical
eye movements of participants were studied. After pre-processing, five
frequency bands were chosen for analysis. For each of the five bands,
the spectral power of the EEG was computed using Fast Fourier
Transformation, after which the Analysis of Variance(ANOVA) method
was employed to study EEG power deviations. The Receiver Operating
Curve (ROC) analysis technique was used to determine the diagnostic
performance of a test, utilized in distinguishing between normal and sz
patients. The highest classification accuracy of 62.2% was obtained for
delta power. Dvey-Aharon et al. [20] discussed a Time-Frequency
transformation based evaluation of the EEG signal to examine for sz. In
this work, a Stockwell approach was implemented to convert the EEG
signal into an image, and then feature extraction and classification
procedures were incorporated to attain improved results. The top five
unique electrodes were reported to have a prediction accuracy between
92.0% and 93.9%, with F2 portraying to be the best electrode. Jo-
hannesen et al. [27] acquired EEG recordings from participants using a
64 electrode system. Participants were required to press one of two
response buttons, using either their right or left index finger, to indicate
whether a particular letter was presented in the previous set. The sig-
nals were analysed using the Brain Vison Analyser software and seg-
mented via four stages of processing: pre-stimulus baseline, encoding,
retention and retrieval. At each of the four stages of processing, time-
frequency data(squared wavelet coefficients, binned and averaged ac-
cording to correct versus incorrect response accuracy) was retrieved for
the five frequency bands examined. Statistical analyses were conducted
on spectral power measured at the Frontal, Central and Occipital lo-
cations. Feature selection was done using the wrapper method [22].
The 1-norm Support Vector Machine (SVM) classifier was utilized to
classify correct and incorrect trials in data with the SVM Model 1,
achieving a classification accuracy of 84%. The SVM Model 2 was im-
plemented to classify normal versus the sz condition in correct trial
data, achieving a classification accuracy of 87%. Santos-Mayo et al.
[28] analysed the EEG-ERP signals of participants who were involved in
an auditory task. The Brain Vision equipment, in compliance with the
10–20 international standards, was used to record the brain signals.
After acquisition, the signals were pre-processed using EGGLAB [24],
after which 16 time-domain features and four frequency-domain fea-
tures were extracted per electrode, for each participant. Features were
selected via linear discriminant analysis using J5 and Mutual In-
formation Feature Selection(MIFS) coupled with the Double Input
Symmetrical Relevance (DISR). The Multilayer Perceptron(MLP) and
SVM classifiers were employed for classification. High classification
rates of 93.42% and 92.23% were achieved with the J5 MLP and J5
SVM classifiers, respectively. Ibáñez-Molina et al. [8] also implemented
sz examination based on the EEG. In this work, EEG recordings were
extracted from participants while they were at rest and engaged in a
naming task. The Neuroscan SynAmps 32-channel amplifier was em-
ployed for data acquirement. EEG signals at the resting phase were
acquired prior to the task, while those from the task were extracted
after each trial. In the resting phase, the segments were analysed using a
moving window method, after which LZC was computed per window.
After normalisation, the final LZC value was computed by calculating
the average of the values obtained from the moving window method. A
total of 80 EEG segments of 2× 103ms were evaluated, at task, and
then averaged to obtain the final Multiscale LZC value. Higher com-
plexity values were reported in right frontal regions of patients who
were at rest. V. Jahmunah et al. [51], developed an eleven-layered deep

learning model for the classification of sz. Two CNN models were de-
veloped separately for subject base testing and non-subject base testing.
In subject base testing, validation of the system was carried out in three
phases: training, testing and validation of data. During training, k-fold
validation was used, whereby the entire data was split into fourteen
equal parts. Twelve parts were used for training, one was used for va-
lidation and another for testing. In non-subject base testing, 10-fold
validation was conducted during training and the system was evaluated
through the training and testing phases. Accuracies of 98.07% and
81.26% were yielded for non-subject base testing and subject base
testing, respectively.

2. Data used

Fifteen minutes of EEG signals acquired from 14 patients with
paranoid sz, encompassing seven males and seven females, with a mean
age of 27.9 ± 3.3 and 28.3 ± 4.1 years, respectively, were collected
from the Institute of Psychiatry and Neurology in Warsaw, Poland [19].
Fourteen healthy subjects within similar age and gender ratio were
recruited from the same institute. In this study, a multi-channel (19-
channel) EEG was adopted for the assessment. The electrodes used were
Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1
and O2. Fifteen minutes of EEG signals were recorded from the parti-
cipants at a sampling rate of 250 Hz, as they remained in a composed
state with eyes closed. Table 2 details the EEG segments studied from
the two classes. The sample EEG signal of normal and sz cases are de-
picted in Fig. 1. Fig. 1(a) presents the normal EEG signal, which shows
enhanced amplitude values in most of the channels, as compared to the
sz signals depicted in Fig. 1(b).

3. Methodology

3.1. Pre-processing

Thirty second segments without artefacts were used for analysis. A
2nd order Butterworth filter was employed to preprocess the extracted
EEG signals. The signals were segmented into nonoverlapping segments
of 25 s, such that each segment consisted of 6250×19 sample points.
This segmentation gave rise to 1142 EEG patterns, which were then
grouped to form a new database of normal and sz class EEGs with a
fixed length. Following segmentation, 12 features were extracted from
the signals. Fig. 2 presents the paradigm employed in this work to ex-
amine the EEG signals.

3.2. Feature extraction and selection

157 nonlinear features were extracted from both EEG classes. The
optimal feature set of 14 features were then selected from the 157
features using Student's t-test [29]. The features employed are the ac-
tivity entropy(ae), largest Lyapunov exponent(lx) [30], Kolmogorov-
Sinai(k-s) entropy [31], Hjorth complexity(hc) and mobility(hm)
[32,33], Rényi(re) [34], Shannon(sn) [35], Tsallis(ts) [36], Kolmogorov
complexity(kc) [37], bispectrum (entropy 1, 2 and phase)(bs) [38],
cumulant(c) [39] and permutation entropy(pe) [40]. Fig. 3 shows the
sample recurrence plots [47–50] for (a) normal and (b) sz EEG signals.

Table 2
Total number of EEG patterns considered in this study.

Type Number of EEG segments

Normal 516
Schizophrenia 626
Total 1142

V. Jahmunah, et al. Artificial Intelligence In Medicine 100 (2019) 101698
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3.3. Classification

Various classifiers were exploited to distinguish between the two
classes. The Decision Tree (DT) classifier [41], which implements a
tree-like configuration with a series of test sequences, was used. The
Linear Discriminant analysis (LD) classifier, which identifies a matching
category according to a set of values or findings, was also implemented
[42,43]. The K-Nearest Neighbour (KNN) is another classifier that was
considered in this work [44]. Like other classifiers, the KNN requires
training and testing based on the available dominant features. The
Probabilistic Neural Network (PNN) was an additional classifier im-
plemented. In PNN [45,46], the hidden-layer is used to compute a
probability density value, and the summing-layer accumulates the

result. The SVM classifier with Radial-Basis-Function (SVM-RBF) was
also used to classify the EEGs based on the selected features. Moreover,
the SVM with various polynomial kernels, including 1st order (SVM1),
2nd order (SVM2) and 3rd order (SVM3), were also instituted to classify
normal versus sz EEG signal datasets. The statistical metrics: accuracy
(Acc), sensitivity(Sen), specificity(Spe) and positive predictive value
(Ppv) were utilized to gauge the performance of the adopted classifiers.

4. Results

Table 3 illustrates the 14 significant features identified with the t-
test. The features were ranked based on the p-values. The Hjorth
complexity, with the lowest p-value, is ranked first, portraying to be the

Fig. 1. Pre-processed EEG signals of (a) normal and (b) schizophrenia.

Fig. 2. Organization of the proposed automated tool to detect Schizophrenia.

Fig. 3. Recurrence plots of (a) Normal and (b) Schizophrenia EEG signals.
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most significant feature. Entropy, with the highest p-value, is ranked
fourteenth, portraying to be the worst feature, for the classification of
EEG signals. Analysing the p values (p < 0.05) from Table 3, it is clear
that the 14 features are highly discriminatory. Hence the features cor-
relate to the classification. From Fig. 3, it is evident that the recurrence
plot is unique for each class. While the pattern is inconsistent and
random in normal signals, it is more repeated and consistent in the sz
signals.

The boxplot in Fig. 4 represents the 14 best features extracted from
EEG signals for classification. It demonstrates that generally most of the
entropy features are of higher values for normal, compared to sz classes,
due to more neural activities in the normal classes as compared to sz
classes. These features are then considered for training and testing of
the classifier system, which can help to categorize EEGs into normal
versus sz classes. Table 4 presents the summarised results of the dif-
ferent classifiers used. It is evident that when the feature size is 2, a

classification accuracy of 78.28% was obtained for EEG classification
using the LD classifier. Hence, it can be noted from this table that the
highest accuracy of 92.91% was yielded by the SVM(RBF) classifier
with 12 features, as compared to the other classifiers considered in this
research work. The accuracy of the SVM(RBF) classifier for varying
number of features is highlighted in Fig. 5.

The LD classifier offers a relatively poor result since it was trained
and tested with only two dominant features. However, compared to
other techniques, the LD classifier offers a result with lesser computa-
tional time. The SVM3 is ranked at second position, requiring only 12
dominant features. The DT and SVM require 13 significant features, and
other approaches require a feature subset greater than 13. From the
above results it can be observed that the average performance obtained
with the SVM (SVM-RBF) is superior compared to other approaches,
and the SVM, SVM3, and SVM2 are ranked at position one, two and
three, respectively. From the above results, it can be considered that the
proposed automated tool with SVM classifier is exceptional for the
classification of normal and sz EEG signals.

Comparing the other studies in Table 1, it is notable that the re-
searchers have explored other analysis techniques instead of a classi-
fication system. Johannesen et al. [27] developed a classification
system but the accuracies yielded are lower than that of our study. V.
Jahmunah et al. [51] used a deep learning technique for the classi-
fiaction, achieving a very high accuracy. However, deep learning
models are computationally expensive and require a longer time to be
developed as compared to machine learning techniques. Hence, our
proposed system is competent to be used as a diagnostic tool for the
detection of sz.

Our proposed ADT employs a sequence of procedures to examine
the multi-channel EEG signals ranging from pre-processing to valida-
tion, and this motivates future work. Furthermore, the final classifica-
tion accuracy is dependent on the performance of intermediate proce-
dures, including pre-processing, feature extraction, and feature
selection. In our future work, a suitable deep-learning procedure based
on a deep Convolutional Neural Network (CNN) architecture shall be

Table 3
Principal features chosen using Student's t-test.

Selected
Features

Normal Schizophrenia

Mean SD Mean SD p-Value t-Value

hc 1.2100 0.1719 0.9780 0.2633 3.09E-59 17.2186
bs-1 381.4749 72.9306 457.9451 99.7012 6.37E-44 14.5133
bs-2 50.1034 7.6933 57.2959 9.9305 2.02E-38 13.4571
kc 5.6173 0.2829 5.8803 0.3643 3.71E-38 13.4050
hm 0.3900 0.0836 0.5321 0.2343 1.2E-36 13.1039
pe 1.6680 0.0712 1.6026 0.0958 2.09E-35 12.8527
re −15.4577 0.8133 −16.0556 0.9915 9.33E-27 10.9856
bs-3 664.9682 121.2538 757.4083 157.32 1.54E-26 10.9357
lx 3.2315 0.7140 3.6562 0.9278 4.83E-17 8.5240
bs-4 8834452 8481768 13995401 16189034 9.32E-11 6.5392
bs-5 0.2533 0.0699 0.2789 0.0843 4.69E-08 5.5000
bs-6 0.5727 0.0831 0.6001 0.0923 2.02E-07 5.2295
k-s 0.0405 0.0363 0.0303 0.0383 5.31E-06 4.5740
bs-7 0.1567 0.0541 0.1726 0.0654 1.13E-05 4.4110

Fig. 4. Performance of selected features on normal/schizophrenia EEG signals.
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implemented to examine the EEG dataset. Deep learning is advanta-
geous as the features are extracted and classified automatically by the
model, unlike the conventional machine learning techniques.
Additionally, these models have sizeable learning capacity, enabling
higher level features to be studied through learning of data from large

datasets, as compared to the traditional machine learning techniques.
Hence, the classification accuracy may be higher.

Moreover, assessment of the EEG time series could also be examined
using machine-learning and deep-learning techniques. The developed
model can be placed in the cloud to diagnose the sz class quickly and

Table 4
Best results achieved from different classifiers used.

Classifier No of Features TP TN FP FN Accuracy PPV Sensitivity Specificity

SVM(RBF) 12 585 476 40 41 0.929072 0.936 0.934505 0.922481
SNM(Polynomial3) 12 564 488 28 62 0.921191 0.952703 0.900958 0.945736
SVM(Polynomial2) 13 565 486 30 61 0.920315 0.94958 0.902556 0.94186
KNN 6 568 464 52 58 0.903678 0.916129 0.907348 0.899225
DT 12 561 448 68 65 0.883538 0.891892 0.896166 0.868217
PNN 14 535 451 65 91 0.863398 0.891667 0.854633 0.874031
SVM(Polynomial1) 14 483 437 79 143 0.805604 0.859431 0.771565 0.846899
LD 2 493 401 115 133 0.782837 0.810855 0.78754 0.777132

Fig. 5. Classification accuracy of SVM(RBF) with different number of features.

Fig. 6. Illustration of the proposed cloud model.
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accurately. The test EEG signals would first be sent to the local web
server of the hospital. Thereupon, the signals would be ported to the
cloud, where our trained sz detection machine learning model is placed.
This model will automatically detect the unknown class and send it
back to the hospital server. The neurologist can confirm the class
manually, and release the result to the patient’s mobile device. Hence,
the patient can immediately take medication or rush to the hospital for
the treatment, as needed. Fig. 6 depicts the proposed cloud model.

5. Conclusion

The proposed ADT involves the extraction of nonlinear features
from signals, t-test based feature selection, and performance validation
of the different classifiers reconnoitered. The SVM(RBF) classifier
yielded the highest accuracy of 92.91% as compared to the other
classifiers employed in this work. It achieved the best accuracy with 12
features, and portrays as the best classifier. This confirms that the
proposed technique is expedient in the classification of normal versus sz
cases. Although the proposed method is promising, extracting the fea-
tures and performing feature selection manually can be cumbersome.
To address this, in the near furture we intend to employ the CNN deep
learning model coupled with the cloud machine for the efficacious di-
agnosis of sz.
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